翻訳と辞書 |
(−2,3,7) pretzel knot : ウィキペディア英語版 | (−2,3,7) pretzel knot
In geometric topology, a branch of mathematics, the (−2, 3, 7) pretzel knot, sometimes called the Fintushel–Stern knot (after Ron Fintushel and Ronald J. Stern), is an important example of a pretzel knot which exhibits various interesting phenomena under three-dimensional and four-dimensional surgery constructions. == Mathematical properties ==
The (−2, 3, 7) pretzel knot has 7 ''exceptional'' slopes, Dehn surgery slopes which give non-hyperbolic 3-manifolds. Among the enumerated knots, the only other hyperbolic knot with 7 or more is the figure-eight knot, which has 10. All other hyperbolic knots are conjectured to have at most 6 exceptional slopes.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「(−2,3,7) pretzel knot」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|